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A classical approach to extending the validity of Airy’s dispersion relation for surface
gravity waves by Friedrichs (1948) to gentle slopes (of special inclinations) is here
re-examined with extended small-slope asymptotics using the full linear harmonic
function theory combined with the method of steepest descent. A new dispersion
relation emerges that appears to give significantly increased accuracy over sloping
beds when tested on the plane beach problem with various forms of the mild-slope
equation (MSE) and global error reductions of the order 50% are noted in some ‘from
deep to shore’ computations. Unlike the classical formula, the new formula predicts
a discontinuous wavenumber at a place where the bottom slope is discontinuous.
Preliminary tests examining the reflection coefficient with the basic (early version)
MSE over ramp-type profiles indicate that this is not a major problem and numerical
results using wavenumber calculated by the new dispersion relation are qualitatively
similar to those of the modified MSE (MMSE) developed in Chamberlain & Porter
(1995). When the new formula is applied (with mass conservation) to the MMSE
on the ramp, results are almost identical to those of a full linear model for inclines
having a gradient up to 8:1.

It is also shown that the dominant asymptotic analysis, responsible for the new
formula, is valid for all slope angles α < π/2 and not just the special angles considered
by Friedrichs.

1. Introduction
The theory of gravity waves within the framework of a small-amplitude linear

perfect-fluid theory over non-horizontal bottoms is often treated, for numerical expe-
diency, by means of one or other of the various forms of mild slope equations (MSE)
that now exist (see e.g. Berkhoff 1973; Booij 1983; Massel 1993; Chamberlain &
Porter 1995; Porter & Staziker 1995; or most recently Porter 2003; Kim & Kwang
2004). All these rely, in one way or another, on the classical dispersion relation for
gravity waves on a horizontal bed at depth h usually written in the form

k tanh kh = ω2/g. (1.1)

Here k is a wavenumber and ω the circular frequency of the monochromatic wave. By
non-dimensionalizing length with respect to g/ω2 the alternative more compact form
k = coth kh is obtained and solutions are readily generated for given h by fixed point
iteration. Its use on gentle inclines was first proposed by Burnside (1914) who justified
it through energy flux arguments on the assumption that reflection was insignificant.
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Figure 1. Schematic representation of beach and shelving region as used in Friedrichs’ (1948)
model; α is the sloping beach angle and the shaded region recedes to infinity as α → 0. Note
that Xα ∼ h is held constant and Xθ ∼ z.

Friedrichs (1948) extended the justification of Burnside (1914) by examining the
potential function asymptotically for small beach slopes and this extension is perhaps
that adopted by others as justification for using the relation locally even when h

varies. The approach in Friedrichs (1948) is to assume the distance of the observation
point from a shoreline origin is O(α−1) where α is the angle of inclination of a plane
bed to the horizontal (see figure 1).

There are four essential points arising in Friedrichs’ work which will be addressed
here:

(i) the theory was developed only for special slope angles α = π/2N where N is
integer;

(ii) the asymptotic theory was restricted to the surface behaviour of the potential;
(iii) only the dominant term was considered in an asymptotic expansion;
(iv) only qualitative discussion was given on the small depth limitations of the

dispersion relation.
The main purpose of the present paper is to examine these issues in more detail and
in particular it will be found that, through extension of the asymptotic analysis (here
using the Mellin transform solution first derived by the author in Ehrenmark 1987),
a new dispersion relation emerges which is also dependent upon bottom gradient.

Thus, that Mellin transform model is briefly outlined in the next section, following
which, in § 3, the relevant results of Friedrichs’ are re-derived in the revised model
and, in particular, the conventional Airy dispersion relation is seen to emerge at this
lowest order of consideration. The shoaling coefficient also emerges as the anticipated
multiple of the group velocity expression. In § 4, the analysis is extended to that of a
two-term asymptotic expansion using the method of steepest descent and here a new
dispersion relation emerges from the saddle point condition. This is the main result
of the present work. It will be found that the conventional Airy relation is replaced
by the modified dispersion equation

k = coth((α cot α)kh)

to this order of approximation. Thus the Airy equation k = coth kh is recovered in
the limit α → 0. That the value of k defined by the new relation truly measures
wavenumber is substantiated (in Appendix B) by differentiation of the argument of
the oscillatory component of the potential.

In § 5 are presented the results of two types of tests on this new formula. First
the plane beach problem is solved using two different forms of the MSE and errors
calculated from the known exact solutions. These tests all confirm that the new
wavenumber values agree better than do the classical values with the ‘benchmark’
values developed in Ehrenmark & Williams (2001) using the exact solution of the
problem. These latter values had previously been shown to produce a much improved
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response of the various MSEs for the beach problem. The actual performance of the
new wavenumbers (allowing also for revised group velocity values) are seen to give
significantly reduced errors – usually as much as 40–50% reduction in the global
error when the potential is computed from deep to almost the shoreline.

The second set of tests considered involves the ramp profile designed by Booij
(1983). This has been used extensively by other authors, e.g. Chamberlain & Porter
(1995) or Kim & Kwang (2004), to test the response of the reflection coefficients
to varying slopes of the ramp and has become a benchmark test for many MSE
and similar approximations. Results are considered for both mass conservation and
surface slope continuity models and the improvement found by using the revised
wavenumber calculation is again most significant. For example the accuracy when
working with the basic MSE using the new k-values is qualitatively similar to that
of the modified MSE using old values and this is found to be the case even for
profiles having a gradient as large as 8. Finally, a test on the modified MSE (Porter
& Staziker 1995) (with mass conservation) also shows a significant improvement
despite the values in Porter & Staziker (1995) being already very accurate. The new
values are almost indistinguishable from those calculated by a two-dimensional linear
model.

Suggestions for further testing are outlined in the concluding § 6 along with some
numerical assessment of the small depth limitations of the dispersion relation on a
steep incline. The consideration of extending the theory, uniformly to beaches of all
angles, turns out to be mainly mathematical (possibly of limited interest to users) and
is therefore presented as Appendix A.

2. A model of waves on a plane incline
The search of an extension to equation (1.1) will be based on the approach adopted

by Friedrichs whereby the integrand of a contour integral expression for the velocity
potential is first expanded (in this case for asymptotically small values of beach slope)
and the path then distorted to pass through saddle points of the dominant part of
the integrand. The anticipation that the solution should have a well-known structure
in the far field, which needs to be recovered from the integral expression, then allows
the condition at the saddle point to generate the subsequent dispersion relation.

We begin by writing, as an inverse Mellin transform, the potential function Φ for
the regular standing wave of the classical scattering problem on a plane beach. For
time-harmonic motion of circular frequency ω, such an expression satisfying ∇Φ =0
in the fluid domain and the bottom and surface conditions

∂Φ

∂θ
= 0 on θ = −α, (2.1)

∂Φ

∂θ
= RΦ on θ = 0, (2.2)

can be written formally as Φ = Re {φ(R, θ)eiωt} where,

φ =
1

2πi

∫ i∞

−i∞
�(s)R−sB(s) sin sπ

cos s(θ + α)

cos sα
ds. (2.3)

Here R, θ are circular polar coordinates such that θ = 0 represents the still water
line, θ = −α the bottom, R = 0 the shoreline and the contour in the integral is
indented to the right at the origin (see e.g. Ehrenmark 1996). Note that lengths have



252 U. T. Ehrenmark

been non-dimensionalized through g/ω2. This wave has amplitude (2π)1/2 at infinity.
The equation

B(s + 1) =B(s) tan sα (2.4)

arises directly from application of the free-surface boundary condition. If we assume
the ‘very simple’ beach angles α = π/2N, for integer N , then

B(s) sin πs = (2π)1/22N−1

N−1∏
j=0

cos(s + j )α, 0 < Re (s) < 1. (2.5)

Note however, that B(s + 1) = B(s) tan sα (thus enabling analytic continuation of (2.5)
into Re (s) < 0) and that

B(s)B(1 − s) =
π

sin πs

(incidentally, this is valid regardless of the nature of α – see Appendix A). This
facilitates an immediate asymptotic expansion of |B(iτ )| for small α which is uniformly
valid if |τ | = o(N ). Because |B(iτ )|2 = (π coth(πτ/2N )/(sinh πτ ), it follows that

|B(iτ )| ∼
(

2N

τ sinh πτ

)1/2

+ O
(
α3/2

)
, α → 0.

The idea of Friedrichs was to deform the integration contour to pass through saddle
points of the integrand and, essentially, (1.1) arose from the saddle point method.
The resulting expression for wave potential is then valid only asymptotically near the
surface (see p. 112 of Friedrichs 1948).

Here it is intended to use the ansatz given above (equations (2.3) and (2.5)) in
a similar way but one which yields the anticipated behaviour in the entire water
column. With the benefit of hindsight, one would put

s = ikζX

and look for a value of k which yields a saddle point at ζ = 1. In this way we can
recover, from the dominant term obtained by the saddle point method, the depth
variation

cosh k(z + h)

cosh kh
,

given that, asymptotically, X|θ | ∼ z, Xα ∼ h as α → 0.

3. Saddle point method
Initially it is assumed that α = π/2N where N is integer. It may be anticipated

that the integrand needs to be estimated at (or near) s = iY for arbitrarily large Y .
Specifically, R = X(1 + z2/2X2 + O(α4)) and if s = ikηX, then with the help of Stirling’s
formula (Spain & Smith 1968, p. 96) it follows that

R−s�(s) =
√

(2π/X) exp

((
ikηX − 1

2

)
log ikη − ikηX +

1

iX

[
1

12kη
+

kηz2

2

]
+ O(X−2)

)
(3.1)
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and with the help of the Euler–Maclaurin sum formula (Fröberg 1985, p. 305) in
equation (2.5) it also follows that

B(s) sin πs√
(2π)2N−1

= exp

{
1

α

∫ π/2

0

log cos(σ + ikηh)dσ + 1
2
log coth(khη) +

πi

4
− iα

6 sinh 2khη
+ O(α3)

}
.

Accordingly, if the potential is expressed in the form

φ =
kh

2α

∫ ∞

−∞
eXw(η)Φ(X, η)

cosh kη(z + h)

cosh kηh
dη

with the contour now suitably indented at the origin (below the axis), then

w(η) = ikη log
ikη

e
+

π

2h
log 2 +

1

h

∫ π/2

0

log cos(σ + ikηh) dσ (3.2)

and

Φ = (ikηX)−1/2 exp

{
1

6iX

(
1

2kη
+

h

sinh 2khη
+3kz2η

)
+

πi

4
+ 1

2
log coth khη +O(α3)

}
.

(3.3)

3.1. Friedrichs’ result

Some of the analysis of Friedrichs (1948) is revisited here. Of pivotal interest
is the conclusion therein that (1.1) could be used on gentle inclines. This was
based on the observation that when the asymptotic wave form was found to be
−2A(λ) sin

{
α−1κ(λ) + π/4

}
(where A is an amplitude function), the local wavelength

Λ determined from Λ = 2πdαX/dκ =2πλ was such that when the local depth was h0

then

h0 = λ0 tanh−1 λ0,

approximately, λ0 also being a local value.
In the present work, from equation (3.2) w′(η) = ik log(kη tanh kηh) so that a saddle

point will exist at η = ±1 if k = coth kh, which is the non-dimensional form of the
usual dispersion relation when k represents the (local) wavenumber. The value of
w(1) is required. After transforming the integral in equation (3.2)

w(1) = ik log
ik

e
− iπ2

8h
+

kπ

2
+

i

2h

∫ 1

−1

log(1 + λ−1u)
du

u
λ = e2kh > 1,

where the integral is along the real axis. It is noted that Rew(1) = 0. Meanwhile
Im w(1) may be considered as a function v of k and written

v(1; k) = k log
k

e
− π2

8h
+

1

2h

∫ 1

−1

log(1 + λ−1u)
du

u

so that v(1; 1) = −1 − π2/8h. However, because k = coth kh, h → ∞ as k → 1 so this
becomes v(1; 1) = −1. Results of similar type were also written down by Friedrichs
(1948).

By further differentiation of equation (3.2)

w′′(η) = ik

(
1

η
+

2kh

sinh 2khη

)
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so that, at η =1, k−2w′′(η), is proportional to the local group velocity of dispersive
waves at depth h. This result appears to have gone unnoticed in Friedrichs (1948)
although it corresponds to the function j (λ) therein (in the notation of the present
paper, w′′(1) = ik2j (k−1)) and as will be confirmed below relates also to the Burnside
shoaling coefficient Dd = [tanh kh (1 + 2kh/sinh 2kh)]−1/2 (Burnside 1914; Ehrenmark
1996).

Further differentiation yields w′′′(η) = −ik(η−2 + 4k2h2 cosh 2khη cosech22khη),
giving w′′′(1) = −ik(1 + h2(k4 − 1)).

3.2. The expansions

Following the routine examples of e.g. (Copson 1965, p. 70) we can write w(η) =
w(1) − τ where τ = 1

2
(η − 1)2f (η) and f has the expansion f (η) = w′′(1) +

(η − 1)w′′′(1) + O((η − 1)2). Because f (1)�= 0 there are just two steepest paths from the
saddle point. At this point it is remarked that only one saddle (say that at η = +1)
need be considered, for the original integrand in equation (2.3) is real on the real
axis and so takes conjugate values at conjugate points. Accordingly, the usual saddle
point argument then leads to the one-term expansion

φ ∼ kh

α
Re

{
eXw(1) cosh k(z + h)

cosh kh

(
2

ikX2w′′(1)

)1/2 ∫ ∞

0

τ−1/2e−τdτ

}
, α → 0

which simplifies to

φ ∼ sin(−v(1)X)

(
−2kπ

iw′′(1)

)1/2
cosh k(z + h)

cosh kh
. (3.4)

It is noted that w′′(1) → ik as h → ∞ so the wave form has the correct amplitude√
(2π) there. The exact linear theory was considered in Ehrenmark (1996) and it was

established there that a true shoaling coefficient was, for small beach slopes, very
accurately modelled by the Burnside shoaling coefficient, here effectively proportional
to w′′(1)−1/2, up to very close to the shore (i.e. provided h is not too small). This was
also observed in Friedrichs (1948).

The phase variation v(1) is of course the element of greatest interest in the present
context. Friedrichs effectively treats h as a function of X. This approach is followed
here, and a local wavenumber can then be defined by d(−hv(1))/dh. After some
routine algebra this reduces identically to the value k, thus giving the surface wave
proportional to sin kx and suggesting the validity of the formula k = coth kh at least
for modest slopes.

In Ehrenmark & Williams (2001) the exact linear model was utilized to examine the
accuracy of the response of Airy’s dispersion equation when the slope was gradually
increased. The findings generally were that the equation tended to underestimate
the wavenumbers near the shore and that this deficiency increased substantially for
steeper beaches. A finite difference computation for an initial value problem posed
with the regular MSE was designed using both classical (Burnside) computations (k1)
and empirically enhanced values (k2). This was compared with the exact solution and
a suitable cumulative error norm computed. This showed that for k1 relative error
was about 25% for the 30◦ beach whilst for k2 this was reduced to 9%. For the 45◦

beach these values were 28.6% and 5.5% respectively. Thus it became clear that, at
least for that investigation (which was carried right up to the shoreline), significantly
enhanced wavenumber values were required.
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An attempt will now be made to extend Burnside’s equation following Friedrichs’
initial approach. To do this, higher-order expansions will be required and the saddle
point method essentially replaced by the fuller method of steepest descent.

4. Method of steepest descent to order α

One restriction of the results in Friedrichs (1948) arises from the implicit assumption
Xα = h. This restricts the subsequent asymptotic analysis to just a leading-term
expansion. A more precise asymptotic investigation requires further terms in the
expansion of the integrand. Thus take X = h cot α instead and write Xα = µh for
convenience. While interest is focused on the surface wave behaviour, the term
cos s(θ + α)/cos sα may be ignored. Expansions are required for R−s�(s) and for
B(s) sin sπ. Correct to O(α),

B(s) sin πs =

(
π

2

)1/2

exp

{
π

2α
log 2 + α−1

∫ π/2

0

log cos(sα + σ ) dσ

+ 1
2
log(− cot sα) +

α

6 sin 2sα

}

whilst expression (3.1) can be retained as it is independent of α. The solution may
then be expressed in the form

φ = kX1/2Re

∫ ∞

0

q(η)eXw(η) dη (4.1)

where

w(η) = ikη log
ikη

e
+

1

µh

(
π

2
ln 2 +

∫ π/2

0

log cos(ikηµh + σ ) dσ

)
(4.2)

and

q = exp

{
1

12ikηX
− 1

2
log kη tanh µkhη +

α

6i sinh 2µkhη

}
.

Differentiation of equation (4.2) gives w′(η) = ik log(kη tanh kµhη) and determines a
stationary point at η = 1 if

k = coth µkh (4.3)

where µ = α cotα.
The expression for q then simplifies to

q = exp

(
− 1

2ik
w′(η) − 1

12Xk2
w′′(η)

)
.

The question will naturally arise as to what extent equation (4.3) might represent an
improvement to the classical dispersion relation when α is no longer very small. Before
investigating this further, it is appropriate to determine more fully the asymptotic
expansion of the wave using two terms of the method of steepest descent.

The value of w(1) is readily extracted as before and can be written

w(1) = ik log
ik

e
− iπ2

8µh
+

kπ

2
+

i

2µh

∫ 1

−1

log(1 + χu)
du

u
(4.4)

where χ = exp(−2µkh). Again, with the integration taken on the real axis, it follows
that Rew(1) = 0. The revised values of w′′, w′′′ and wiv (denoted a, b and c below)
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Figure 2. Contours of Re w(η) and paths of steepest descent and ascent; case:
α = π/4; h = 2.

at η = 1 turn out to be respectively ik(1 + µh(k2 − 1)), −ik(1 + h2µ2(k4 − 1)) and
2ik(1 + h3µ3(k2 − 1)(k4 + 1)). Thus near the saddle point, set

w = w(1) − τ, τ =
i

2
(η − 1)2

(
|w′′(1)| − 1

3
|w′′′(1)|(η − 1) + 1

12
|wiv(1)|(η − 1)2 . . .

)
.

The steepest paths are given by Im (w(η)) = Im (w(1)). These are computed (purely
for illustration) from the full expression and shown in figure 2 for the particular case
α = π/4 taken at depth h = 2 where the solution of (4.3) gives the value k = 1.072
approximately (compared with the approximate value 1.033 from the (Burnside)
Airy formula or 1.108 as computed in Ehrenmark & Williams (2001) with an ad
hoc method for the plane beach; see figure 3 for wider comparison of these three
methods). In Chamberlain & Porter (1999) the authors derive a number of useful
approximations to the solution of the dispersion equation, thus obviating the need
for iterative schemes. One of these approximations, in the present notation, becomes
k = (1 − µhe−µh/ sinhµh)−1/2 and yields the comparative value k =1.079 at h = 2 for
α = π/4. Other approximations given are more accurate but also more cumbersome.

Near the saddle point, set η = 1 + Z and τ = − 1
2
t2 and define the two branches of

steepest descent by

Z1 = a1t + a2t
2 + . . . , Z2 = −a1t + a2t

2 + · · ·

from which it follows that

a1 =
1√

w′′(1)
and a2 = −1

6

w′′′(1)

w′′(1)2
.

Also, on each branch, q(η) = q(1) + Z1,2q
′(1) + O(Z2) where the prime denotes

a derivative with respect to η. Putting the results together and taking only the
two dominant terms, it follows from equation (4.1) and the usual steepest descent
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Figure 3. Dispersion curves from three different computations plotted against non-
dimensional depth h: (a) solutions to k = coth kh, (b) (present theory) solutions to k = cothµkh,
(c) as computed ad hoc in Ehrenmark & Williams (2001). Case: α = π/4.

arguments that

φ ∼ Re (−ikX)1/2eiXv(1)

∫ ∞

0

(q(1) + (Z1 − Z2)q
′(1) + · · ·)

(
dZ1

dτ
− dZ2

dτ

)
e−τX dτ, (4.5)

as X → ∞. That dZ1/dτ − dZ2/dτ is bounded when τ � τ0 for some τ0 > 0 is readily
seen from the result

dZ

dτ
=

−1

w′(η)
=

i

k log

(
kη

1 − χη

1 + χη

) .

The two-term asymptotic expansion can now be assembled from details in (Roseau
1976, pp. 108–111) subject to the validity of the required contour deformation. This is
readily demonstrated because all singularities of the original integrand are on the real
s-axis and the saddle point in question is on the positive imaginary s-axis at a
distance > X from the real axis. Moreover, the convergence of the integral as
Im s → ±∞ is absolute in the left-hand half-plane Re s < 1

2
(see e.g. Ehrenmark 1987

for full details of asymptotics required). The expansion is therefore

φ ∼
(

−2πk

iw′′(1)

)1/2

Re eiXv(1)

(
1 +

iΩ

2X
+ . . .

)
q(1), X → ∞ (4.6)

where

iΩ =

[
−q ′′

qw′′ − 5

12

(w′′′)2

(w′′)3
+

1

4

wiv

(w′′)2
+

q ′w′′′

q(w′′)2

]
η=1

and Ω is real to the leading order. When Ω = o(X) equation (4.6) can be interpreted
as

φ ∼
(

−2πk

iw′′(1)

)1/2

cos

(
Xv(1) +

Ω0

2X

)
, X → ∞ (4.7)
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Figure 4. Relative values of the second asymptotic term: plots show Ω0/(2X2v(1)) for
beach angles α = π/3 (rightmost curve), π/4, π/5, π/6, and π/7 (leftmost curve) against
non-dimensional depth h.

and the effective wavenumber k∗ (see Appendix B) is then

k∗ = −k +
d

dX

(
Ω0

2X

)
.

Denoting [a, b, c] as [w′′, w′′′, wiv]η = 1, the dominant part iΩ0 is found when
−q ′′/qa + q ′b/qa2 ∼ a/4k2 and hence can be written

iΩ0 ∼ a

12k2
− 5

12

b2

a3
+

1

4

c

a2
, X → ∞.

The validity of the expansion breaks down when Ω/2X = O(X). The quantity
Ω0/(2X2v(1)) has been computed against depth for a range of angles (see figure 4). In
order to gauge more fully the significance of these results, presented in figure 5
is a more extensive graphical representation against beach angle where the curves
show the depths of flow at which the second asymptotic term is respectively 5%, 10%
and 20% of the first term. Although rather imprecise, this might serve as a good
indicator to modellers of boundaries that should not be transgressed lightly.

5. Numerical tests
The two basic types of test to be considered are first tests on the classical plane

beach problem for which exact solutions are well known and easily computed and
secondly tests on the ramp profile of Booij for which ‘exact’ solutions are taken
from Booij’s full linear model (see Booij 1983) but here calculated (and supplied in a
personal communication) by R. Porter using an integral equation approach.

5.1. The beach problem tests

Tests of MSE response to varying-wavenumber calculations in the flat-beach problem
were designed and executed in Ehrenmark & Williams (2001). There, the original MSE
(Berkhoff 1973), the Modified MSE (Chamberlain & Porter 1995) and the extended
MSE (Massel 1993) were all tested using Airy values for k and also using the values
obtained from consideration of the known exact solution. These tests all revealed
that the response was much more accurate using the latter values, particularly for
steeper beaches where it was clear that Airy theory would significantly underestimate
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Figure 5. Boundaries of relative discrepancy between one- and two-term asymptotic
expansions plotted against beach angle α and non-dimensional depth h. Contours show
5%, 10% and 20% discrepancy boundaries equivalent to Ω0/(2X2v(1)) = [ 0.05, 0.1, 0.2].

the values of k (illustrated in the respective curves (a) and (c) in figure 3) for the
case of the beach of unit gradient. Figure 2 shows also that the dispersion curve (b)
calculated from the new formula k = coth µkh is much closer to the ‘exact curve’ (c)
so that improved results can be expected.

Some of the tests of Ehrenmark & Williams (2001) are thus repeated here using
revised values for k and compared with Airy values. The reader is referred to that
work for the full details of the integration. Obviously the interest here is in steeper
beaches, so the comparison is limited, for brevity, to two beaches namely α = π/6, π/4.
There is not a great deal of difference in the new performance of the modified MSE
compared to that of the extended MSE so the results of the latter are not published
here. It is emphasized again that this is not a test of the performance of various MSEs
(there are other more improved versions now e.g. Porter 2003) but simply a test of
how a given MSE might give better results using the new k values. It is found that
both the original MSE and the modified MSE give significantly increased accuracy.
Results for the modified MSE are given in figure 6 for respectively the regular and
singular waves on the unit-gradient beach. A similar display for a beach of inclination
30◦ using instead the original MSE by Berkhoff (1973) is given in figure 7. Shown
also, in each case, are the curves obtained with the theory in Ehrenmark & Williams
(2001) which were developed on an ad hoc basis. In all cases there is clear evidence
of a very significant increase in accuracy, particularly at very shallow depths, when
the new dispersion equation k = cothµkh is used in place of k = coth kh.

5.2. The ramp-profile tests

The normal-incidence ramp-profile test of Booij (1983) is recalculated (see figure 8)
using first the basic MSE (Berkhoff 1973). Readers are referred to Booij (1983)
for full details of the geometry. The object again is to examine the improvement
that may be obtained by using the revised wavenumber values, so this basic MSE
is used and improvements in results for steeps slopes are comparable to those
noted in Chamberlain & Porter (1995) using the more accurate modified MSE with
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Figure 6. Initial value problem started at R = 20: Plots show % cumulative error in response
by the modified MSE (Chamberlain & Porter 1995) to the old and new dispersion relation.
Case: α = π/4. (a) Regular wave; (b) singular wave. Results of Ehrenmark & Williams (2001)
shown for comparison.

old wavenumbers. The question of the alternative mass continuity requirements at
the points where h′ is discontinuous, discussed by Porter & Staziker (1995) is not
considered for this equation.

It is also applied to the modified MSE with mass conservation maintained by jump
conditions where h′ is discontinuous. This shows remarkable accuracy when the new
dispersion relation is used. Figure 9 shows the nature of the improvement obtained
for the steepest inclines. A value of 0.2263 is obtained for the reflection coefficient at
Ws = 0.05 (steepness gradient 8) compared with 0.2276 computed from the full linear
model and compared also with 0.2604 from the modified MSE (without evanescent
waves) as in Porter & Staziker (1995). See also Appendix C for some details.

6. Concluding remarks
A revised equation for the general transformation of wavenumber under conditions

of varying depth, namely

k = coth µkh
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Figure 7. Comparison of response by original MSE (Berkhoff) to old and new dispersion
relation. Case: α = π/6. (a) Regular wave; (b) singular wave. Results of Ehrenmark & Williams
(2001) shown for comparison.

where µ = α cotα, has been suggested from an asymptotic analysis of the exact
solution of the linearized beach problem. This has correspondingly led to a revised
estimate for group velocity on slopes of gradient tan α. The tests included here have
been restricted to those on a plane beach and the standard test against the ramp
profile used by Booij (1983) as this is now routinely used by most authors to examine
the performance of their various versions of the MSE. There remains the interesting
possibility of developing a numerical test using the exact solution of Roseau (1976,
pp. 100–106) for waves over a specific curved bottom which recovers uniform depth
as X → ∞. This work is currently being undertaken as a PhD project and will be
reported in due course. Also, a referee has raised the interesting question of extension
to a three-dimensional analysis. This could be investigated, at least for oblique
waves on a plane incline, using a similar model to the one herein with the (inverse)
Mellin transform replaced by the Kontorovich–Lebedev transform (see e.g. Ehrenmark
1998).

One aspect of the present solution which is also discussed is the usefulness of a
two-term expansion, such as that developed herein, in helping assess the range of
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Figure 8. Comparison of reflection coefficient response |R| on Booij’s ramp by the original
MSE (Berkhoff) to the old (curve (a)) and new (curve (b)) dispersion relation. Horizontal axis
Ws gives non-dimensional horizontal extent of ramp; vertical extent is a fixed 0.4 units. The +
indicate the full linear solution.
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Figure 9. Comparison of reflection coefficient response |R| on Booij’s ramp by the modified
MSE with mass conservation (Porter & Staziker) to the old (full line (a)) and new (broken line
(b)) dispersion relation. Horizontal axis Ws gives non-dimensional horizontal extent of ramp;
vertical extent is a fixed 0.4 units. The + indicate the full linear solution.

validity of the one-term expansion. Previous authors have generally left this discussion
at a qualitative stage, e.g. Burnside (1914) speaks of negligible reflection as a criterion
whilst Friedrichs (1948, p. 114) refers to validity to within one third of a wavelength
from the shore-line. Here, figures 4 and 5 indicate some more definitive boundaries
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α

XX′

D

h(X)h(X′)

Figure 10. Schematic diagram, with X as a true field point and X′ as a virtual field point,
relating actual depth h to virtual depth h′ = h(X′) inferred from Friedrichs’ asymptotic analysis.
Note that h(X) 
 h(X′)α cotα to O(α2).

for the safe application of the dispersion relation. Interestingly, in his first experiment
on the ramp profile, Booij (1983) found that in water of minimum non-dimensional
depth 0.2, his results appear to become unreliable when the bottom slope exceeds
0.4. With reference to figure 5 one can identify this point precisely in the transitional
band between 5% and 10% discrepancy, i.e. where one might expect the asymptotics
to become somewhat questionable. The new dispersion relation evidently pushes this
boundary to a shallower depth for fixed angle for the same basic version of MSE.
More refined models do this anyway: as seen in Chamberlain & Porter (1995) the
modified MSE (MMSE) can be used with reasonable accuracy up to gradient 4 and
in Porter & Staziker (1995) (also MMSE but with mass conservation) even steeper
gradients, whilst in Kim & Kwang (2004) the authors developed a complementary
MSE based on stream function and appear to have kept the same order of accuracy
as Booij for slopes of order unity. There is no inference that most of the errors
incurred by Booij and others for the very steep ramp are due only to the differences
between the old and new dispersion relation. Indeed, Porter & Staziker (1995) have,
to some extent, accounted for Booij’s inaccuracy at steep slopes through the neglect
of mass conservation in the model. On the other hand it has been seen that use of the
new dispersion relation with Berkhoff’s original MSE has a similar effect and that for
the modified MSE the results for steeper beaches are almost indistinguishable from
those of the full linear model.

A simple physical explanation for why the new dispersion relation should be used
can be inferred from figure 10. This shows a true field point X associated with a point
D on a curved bottom. Friedrichs’ analysis is based on the asymptotic approximation
X ∼ h/α, X → ∞ and so this same point D will in turn be associated with a virtual
field point X’ on the surface found by drawing the arc centred where the tangent at
D cuts the free surface. Thus the virtual depth h′ which would be used in the classical
dispersion relation is overestimated as shown and this results in the underestimate of
the wavenumber k. Clearly the ratio between h and arc length is α cotα.

The author is indebted to Dr Richard Porter (University of Bristol) for kindly
providing the ‘exact’ comparative data of the ramp problem derived by an integral
equation approach. Additionally, a number of helpful suggestions by the referees have
contributed to tidy up the manuscript.
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Appendix A. Asymptotic analysis with arbitrary α

In this Appendix the relaxation of the special values of slope that were considered
in Friedrichs (1948), and here in the main text, is discussed in order to simplify the
asymptotic analysis. Thus an alternative asymptotic analysis only for B(s) is required
for the value s = ikηX where X � 1. The additional notation Bm(s) is introduced to
indicate the dependence of B on the nature of α where now α = π/2m and m � 1
but not necessarily integer. We must adopt the more general expression (Ehrenmark
1987)

Bm(s) = �(s) exp

[∫ ∞

0

dt

t

{
2et/2 sinh(s − 1

2
)t

(emt + 1)(et − 1)
−

(
s − 1

2

)
e−t

}]
, −m < Re s < m + 1.

(A 1)
Using equation (A 1) and Kummer’s result (Whittaker & Watson 1952, p. 250), Bm

can be expressed in the alternative form

Bm(s) =
( π

sin πs

)1/2

exp

{
−1

2

∫ ∞

0

sinh(2s − 1)t

sinh t

tanh mt

t
dt

}
, 0 � Re (s) � 1.

Let 2N − 1 � m < 2N + 1. Note that equation (2.4) follows trivially from either of these
integral expressions. The process requires evidence that the asymptotic expression for
Bm is identical to that for B2N + 1 in the dominant term. Since the dominant exponent
was earlier seen to be O(m) it must now be shown that the terms in the exponent for
Bm/B2N + 1 are all o(m).

The integral above (denoted I ) may be considered in two parts, i.e. I = I1 − I2

where

I1(m) =

∫ ∞

0

sinh 2st

t

tanh mt

tanh t
dt,

and

I2(m) =

∫ ∞

0

cosh 2st

t
tanh mt dt,

an integral which is readily evaluated when s = iµm and where now µ = khη/

(m tan π/2m). From Art. 7.116 of Ditkin & Prudnikov (1965) it follows that

I2 = log coth
πµ

2
= O(1).

Put M =2N + 1 for convenience. The estimation of J = I1(m) − I1(M) is now required
for m � 1. Clearly

J =

∫ ∞

0

sin 2µmt

t

(tanh mt − tanhMt)

tanh t
dt +

∫ ∞

0

(sin 2µmt − sin 2µMt)

t

tanh Mt

tanh t
dt.

The first of these integrals, J0, is∫ ∞

0

sin 2µmt

t

sinh(m − M)t

sinh t

cosh t

coshMt coshmt
dt

and since m − M < 1 and sin 2µmt < 2µmt the estimate

|J0| < 2µm

∫ ∞

0

1

coshMt
dt = O(1)
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For the second integral 2J1, follows.

J1 =

∫ ∞

0

cos µ(m + M)t sin µ(m − M)t

t

(
tan hMt

tanh t
− 1

)
dt

+

∫ ∞

0

cos µ(m + M)t sin µ(m − M)t

t
dt.

Here the second of these integrals is O(m−1) by the Riemann–Lebesgue lemma whilst
the first one (J10) can be estimated by splitting the integration interval. Note first that
|tanh Mt/tanh t − 1| < M − 1 so that, with (·) denoting the integrand of J10,∣∣∣∣

∫ 1/M

0

(·) dt

∣∣∣∣ < (1 − 1/M)(M − m)µ = O(1).

For the remaining part, write (tanh Mt − tanh t) = sinh(M − 1)t/(cosh Mt cosh t) so
that ∣∣∣∣

∫ ∞

1/M

(·) dt

∣∣∣∣ < µ(M − m)

∫ ∞

1/M

sinh(M − 1)t

coshMt sinh t
dt = O(1).

Hence the terms at O(m) are unaffected in the analysis. Therefore the saddle point
analysis will remain as it was in the case of the special slope angles.

Appendix B. Proof of wavenumber
For a wave variation cosXv(1) the wavenumber can be defined by (d/dX) Xv(1)

and it is shown here that this quantity is identically equal to k when k = coth µkh.
From the main text,

v(1) = Imw(1) = k log k/e − π2/8H +
1

2H

∫ 1

−1

log(1 + e−2kH )
du

u
,

with H = µh for convenience. On differentiation (denoted by′)

d

dH
(Hv(1)) = k log k/e + Hk′ log k − (kH )′e−2kH

∫ 1

−1

1

1 + ue−2kH
du.

Completing the integral, the last term is equivalent to −(kH )′ log coth kH . In view of
the dispersion relation itself, it therefore follows that

d

dH
(Hv(1)) =

d

dX
(Xv(1)) = −k

as required.

Appendix C. Ramifications of use with the modified MSE
The use of the modified mild-slope equation (MMSE) is not entirely straight-

forward. The functions u0, u1 and u2 developed in Chamberlain & Porter (1995)
are based on the nature of the choice of profile function w0 in the approximation
φ(x, y, z) =φ0(x, y)w0(x, y, z) where z is the vertical coordinate and w0 is assumed
slowly varying in x. The function

w0 =

coshµkh

(
1 +

tan−1(z/x)

tan−1(h/x)

)
coshµkh
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is a choice which ensures that the surface boundary condition is satisfied exactly
whilst at the bed ∂w0/∂z = 0. Thus, in common with the frequently used w0, namely
cosh k(z + h)sechkh, the bottom condition is satisfied exactly by w0 only on horizontal
bottoms. Moreover, in common with the approach in the asymptotic analysis, only
the dominant terms (for small α) need be considered. It is easily established, with
reference to equations (2.11) and (2.16) in Porter & Staziker (1995), that this amounts
essentially to u0 being replaced by u0/µ, u1 being invariant and u2 replaced by µu2

once k has been determined by k = coth µkh. These changes were incorporated in the
calculations shown in figure 9.
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